On some nonlinear pseudo-parabolic equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On Some Delayed Nonlinear Parabolic Equations Modeling Co Oxidation
It is well known that several features of many reaction-diffusion systems can be studied through an associated Complex Ginzburg-Landau Equation (CGLE). In particular, the study of the catalytic CO oxidation leads to the Krischer-Eiswirth-Ertl model, a nonlinear parabolic system of three equations, which can be controlled by a delayed feedback term. For the control of the uniform oscillations of...
متن کاملA pseudo - monotonicity adapted to doubly nonlinear elliptic - parabolic equations
Pseudo-monotonicity seems to be a good notion to deal with convergence in non-linear terms of partial differential equations. J.-L. Lions [16] used two different definitions of pseudo-monotonicity for elliptic and parabolic problems, and derived associated existence results. Nonlinear elliptic-parabolic equations are intermediate equations for which an intermediate pseudo-monotonicity is define...
متن کاملLarge time behavior for some nonlinear degenerate parabolic equations
We study the asymptotic behavior of Lipschitz continuous solutions of nonlinear degenerate parabolic equations in the periodic setting. Our results apply to a large class of Hamilton-Jacobi-Bellman equations. Defining Σ as the set where the diffusion vanishes, i.e., where the equation is totally degenerate, we obtain the convergence when the equation is uniformly parabolic outside Σ and, on Σ, ...
متن کاملAlmost-sure Explosive Solutions of Some Nonlinear Parabolic Itô Equations
The paper is concerned with the problem of explosive solutions to a class of nonlinear parabolic Itô equations. Under some sufficient conditions on the initial state and the nonlinear coefficients, it will be shown that the solutions will explode in finite time almost surely. Theorem 3.1 is concerned with the existence of a unique local strong solution. The main result is presented in Theorem 3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1979
ISSN: 0022-0396
DOI: 10.1016/0022-0396(79)90051-2